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Abstract

New kernel functions for spherically, planar and cylindrically symmetric problems are developed, based on the funda-
mental interpolation theory of SPH. The Lagrangian formalism is used to derive the corresponding set of modified SPH
equations of motion. The results show good agreement both with analytical and numerical results, in the case of the Sod
shock tube test, the Noh infinite shock problem, and the Sedov point explosion test. The formulation has also been included
in a 3D cylindrically symmetric problem of two colliding spherical shocks. For this latter problem, the results are presented
allowing both a constant and a variable resolution. The results clearly demonstrate the capability of the new formulation to
solve the singularity problem at the symmetry axis.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Smoothed particle hydrodynamics (SPH) is a Lagrangian numerical method based on a description, where
a set of particles are used to simulate a continuous fluid flow. The method was originally developed for a
Cartesian coordinate system, and only limited effort has been put into developing an SPH code in cylindrical
or spherical coordinates that take advantage of existing cylindrical or spherical symmetries. SPH formulations
for cylindrically symmetric systems are given in [1,2]. These descriptions are derived based on the standard
Cartesian kernel function which is multiplied by the inverse radius and renormalized. The equations of motion
are, except for the radial dependence left unaltered. Similar approaches are presented in [3,4], although alter-
native kernel functions are applied.

In the field of material modeling, efforts have been put into handling impact problems with SPH. In this con-
nection, a solution to the development of a cylindrical description in SPH is presented [5]. Equations of motion
in cylindrical coordinates are derived by making a change of coordinates and performing an axi-symmetric
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averaging of the equations of motion formulated in Cartesian coordinates. The averaging is performed assum-
ing an infinite range Gaussian kernel function. Practical SPH calculations thus require the introduction of an
arbitrary cut-off at finite range. The method is found applicable to impact type problems. In solving one of the
more demanding numerical tests in hydrodynamics, the Noh infinite shock problem [6], however, the results
reveal problems in obtaining correct density levels. Problems are also reported in the region close to the origin.
A later paper by the same group presents an improved solution to the same problem [7], in which a dual inter-
polation point technique is introduced. In this approach, one half of the interpolation points (particles) are con-
structed to carry stress, velocity gradients, and other derived field variables while the other half in a staggered
fashion carries velocity information. The new description shows a distinct improvement of the shock capturing
ability, though the post-shock density level is still somewhat under-estimated.

An alternative description of the axi-symmetric problem in cylindrical coordinates is presented in [8]. Here
the Lagrangian formalism is used to formulate a set of equations of motion in which density q is replaced by a
cylindrical density g = 2prq. In these equations, the kernel function is replaced by symmetric one-dimensional
functions in either r or z coordinates. The results presented for the cylindrical Sod shock tube problem [9]
show good agreement with the results obtained using an alternative numerical Lagrangian finite difference
method. Unfortunately, however, numerical results are only presented for the region well removed from
the symmetry axis r = 0. As the definition of the density may indicate, the description does not handle the sit-
uation in which r ! 0. Consequently, the code is not suited for solving the infinite shock problem as described
in [6].

Modifications of the standard kernel functions to allow local anisotropy is performed by different groups.
In [10], a Taylor expansion of the standard kernel function is used to construct a quartic smoothing function,
whereas ellipsiodial kernels are used in [11].

In this paper, we present a different approach to spherically and cylindrically symmetric descriptions using
SPH. In our approach, we make explicit use of the assumed symmetry in the fundamental interpolation for-
mula to derive suitable kernel functions in the appropriate coordinate system. The kernel functions thus
embed the particular symmetry of the problem. Equations of motion with the new kernel functions are derived
making use of Lagrangian formalism.

In the next section, we give a short introduction to the fundamentals of SPH. For the spherically symmetric
description, the solution is presented in Section 3. A new set of the equations of motion and some test results
are given in Section 4. The new technique could also be applied to plane symmetric problems in a Cartesian
coordinate description. The derivation of the planar description and some results using this description are
presented in Section 5, followed by the cylindrical description in Section 6. In Section 7, results for a 3D cylin-
drically symmetric problem of two colliding spherical shocks are presented. For this problem, we present re-
sults obtained both with a constant resolution, and by making use of the full capability of our RSPH code [12],
including both a stepwise constant h-profile and regularization. Finally, in Section 8, we give a short discussion
and some concluding remarks.

2. Fundamentals of SPH

The SPH method [13] is based on interpolation theory, in which an arbitrary field function F(r) (and its
derivatives) is expressed in terms of its values at a set of disordered points. This is achieved by approximating
the function F(r) by its integral interpolant ÆF(r)æ,
F ðrÞ � hF ðrÞi �
Z

dr0 F ðr0ÞW ðr0 � r; hÞ ð1Þ
and subsequently discretizing the integral. The kernel function, W, should normalize to unity and become a
delta function in the limit where the characteristic smoothing length h approaches zero. The kernel function is
usually chosen to be differentiable, non-negative and symmetric, W(r 0, r;h) =W(|r 0 � r|,h). In Eq. (1), the inte-
gration is over the entire space. The choice of a kernel function with finite support is, however, essential in
order to reduce the number of particle interactions and therefore code efficiency. For the subsequent discus-
sion, the frequently used third-order B-spline function [14] in d-dimensional space is our choice of ‘‘generic’’
kernel function,
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including spatial dimensions up to 5 will become clear during the subsequent discussion.

3. Spherically symmetric interpolation

For a spherically symmetric field quantity F(r) = F(r), the integral interpolant equation (1) reduces to
hF ðrÞi ¼
Z

dr0 r02F ðr0Þ
Z

d cos h 2pW3ðqÞ ð3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where q ¼ ðr0 � rÞ2 þ 4rr0sin2ðh=2Þ=h and h is the angle between r 0 and r. Since h2q dq = rr 0 dcosh, it follows
that
hF ðrÞi ¼
Z

dr0 r02F ðr0ÞW 3S1ðr0; r; hÞ; ð4Þ
where the appropriate kernel function for the spherically symmetric problem is given by
W 3S1ðr0; r; hÞ ¼
2ph2

r0r

Z minð2;ðr0þrÞ=hÞ

jr0�rj=h
qW3ðqÞ dq. ð5Þ
In the notation chosen for the resulting kernel function, W3S1, the first index, in this case 3, indicates the
dimension d of the starting ‘‘generic’’ kernel function Wd. The following letter indicates the particular type
of symmetry, here S for spherical, whereas the latter number, in this case 1, gives the dimension of the resulting
kernel function. By noting that
2ph2
Z

qW3ðqÞ dq ¼ 1

h

CðqÞ
DðqÞ

�
� 1

h

q2 � 3
4
q4 þ 3

10
q5; 0 6 q < 1;

2q2 � 2q3 þ 3
4
q4 � 1

10
q5; 1 6 q < 2

(
ð6Þ
and defining r ” r/h and r 0 ” r 0/h, the kernel function W3S1 can be written in the form:

for 2 < r 0 + r:
W 3S1ðr0; r; hÞ ¼
1

hr0r

7
10
� Cðjr0 � rjÞ; 0 6 jr0 � rj < 1;

8
10
� Dðjr0 � rjÞ; 1 6 jr0 � rj < 2;

(
ð7Þ
for 1 < r 0 + r 6 2:
W 3S1ðr0; r; hÞ ¼
1

hr0r
� 1

10
þ Dðr0 þ rÞ � Cðjr0 � rjÞ; 0 6 jr0 � rj < 1;

Dðr0 þ rÞ � Dðjr0 � rjÞ; 1 6 jr0 � rj < 2

�
ð8Þ
and for r 0 + r 6 1:
W 3S1ðr0; r; hÞ ¼
1

hr0r
Cðr0 þ rÞ � Cðjr0 � rjÞð Þ. ð9Þ
We take notice of the fact that oW3S1/or
0 6¼ �oW3S1/or. In Fig. 1, the kernel function W3S1(r

0, r;h) is plotted as
a function of r 0 � r for different values of r. The asymmetry with r 0 � r for a given r is an important property
of W3S1 that will give rise to so-called ‘‘hoop force’’ effects in the subsequent equations of motion. The degree
of asymmetry decreases with increasing r as the spherical symmetry gradually reverts to local plane symmetry.
We note that W3S1(r

0, r;h) is invariant relative to an interchange of its two arguments r 0 and r. Furthermore,
while W(r 0, r;h) is C2-continuous, the kernel function for spherical symmetry W3S1 is C

3-continuous. By con-
struction, W3S1 is normalized for every r, that is,
Z

dr0 r02W 3S1ðr0; r; hÞ ¼ 1. ð10Þ



Fig. 1. Kernel function W3S1 for spherical symmetry.
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4. Equations of motion in spherical SPH

To derive appropriate SPH equations of motion in a spherically symmetric coordinate system, we
introduce
dm0 ¼ dr0 r02qðr0Þ ð11Þ

as a new integration variable in Eq. (4). Apart from a factor 4p, dm 0 represents the infinitesimal mass in a
spherical shell of radius r 0 and thickness dr 0. It is worth noting that this change of variable leads to an inter-
polation formula independent of the radius r, as the r dependence is found in the kernel function only. Next,
the integral interpolant equation (4) is approximated by a summation interpolant,
F i ¼ F ðriÞ �
X
j

mj
F j

qj
W 3S1ðrj; ri; hÞ. ð12Þ
For the density, we thus obtain the following expression for particle i:
qi �
X
j

mjW 3S1ðrj; ri; hÞ. ð13Þ
Eq. (13) represents the continuity equation in the SPH model. Furthermore, we require the position ri and
velocity vi of particle i to vary in time according to
dri
dt

¼ vi. ð14Þ
An alternative formulation for Eq. (14), is the XSPH method [15], in which an additional term is added to Eq.
(14), representing a velocity difference averaging in the particle neighborhood.

The momentum equation follows by introducing the particle Lagrangian [16–18]
L ¼
X
j

mj
1

2
v2j � eðqj; sjÞ

� �
; ð15Þ
with the internal energy density e(q, s), given as a function of density q and entropy s. The momentum equa-
tion for isentropic flow resulting from the Lagrangian (15) is then
mi
dvi
dt

¼ �
X
j

mj
oeðqj; sjÞ

oqj

oqj

ori
. ð16Þ
Since
oqj

ori
¼
X
k

mk
o

ori
W 3S1ðrk; ri; hÞdij þ mi

o

ori
W 3S1ðri; rj; hÞ; ð17Þ
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and (oe/oq)s = P/q2 from the second law of thermodynamics, we find
dvi
dt

¼ �
X
j

mj
P i

q2
i

o

ori
W 3S1ðrj; ri; hÞ þ

P j

q2
j

o

ori
W 3S1ðri; rj; hÞ

 !
; ð18Þ
or, when the symmetry of the W3S1 function with respect to its two arguments rj and ri has been taken into
account,
dvi
dt

¼ �
X
j

mj
P i

q2
i
þ P j

q2
j
þPij

 !
o

ori
W 3S1ðrj; ri; hÞ. ð19Þ
In Eq. (19), we have also included the artificial viscosity Pij which is introduced to reduce numerical errors in
computations of strong shock wave problems. So far we have made use of the standard form of the artificial
viscosity in SPH [14] as derived from the artificial viscosity developed for finite difference methods [19].

The energy equation is derived by noting that
dei
dt

¼ P i

q2
i

dqi

dt
; ð20Þ
with
dqi

dt
¼
X
j

mj vj
o

orj
þ vi

o

ori

� �
W 3S1ðrj; ri; hÞ. ð21Þ
Thus,
dei
dt

¼
X
j

mj
P i

q2
i
þ 1

2
Pij

� �
vj

o

orj
þ vi

o

ori

� �
W 3S1ðrj; ri; hÞ. ð22Þ
Together with the equation of state
P i ¼ ðc� 1Þeiqi; ð23Þ

where c is the ratio of specific heats, Eqs. (13), (14), (19) and (22) constitute the equations of motion in the
spherically symmetric case.

The conservation law properties of the equations of motion derived from a Lagrangian formalism are nor-
mally ascertained by considering the symmetry properties of the Lagrangian [17]. In the present case, we are
dealing with equations formulated in curvilinear coordinates and an explicit problem symmetry imposed. For
the spherically symmetric case, conservation of angular momentum is by assumption trivially satisfied. Con-
servation of radial momentum does not apply, while the invariance of L to a shift in time shows that energy
E ¼

P
jvjoL=ovj � L ¼

P
jmjð12 v2j þ eðqjÞÞ is conserved.

4.1. Simple spherical tests cases

A simple test of the validity of the continuity and energy equations, Eqs. (13) and (22), can be performed by
considering a controlled radial compression in a system with homogeneous mass and energy densities, and
where the fluid velocity is everywhere and at all times given as v = �r. The continuity and energy equations
for this case reduce to
dq
dt

¼ � q
r2

o

or
ðr2vÞ ¼ 3q ð24Þ
and
de
dt

¼ P
q2

dq
dt

¼ 3ðc� 1Þe. ð25Þ
Both equations can be integrated. In Fig. 2, the relative errors Dq/q (solid lines) and De/e (dash-dotted lines)
resulting from Eqs. (13) and (22) as compared with the analytical solution are plotted. The results are valid for



Fig. 2. Relative error in the density (solid lines) and energy (dash-dotted lines) for a spherical test of controlled radial compression.
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any particle, independent of the initial radial distance r. The temporal variation in the relative error indicates
the increased accuracy obtained as the interparticle separation is gradually reduced.

For a second and more complete test, we will use the SPH-based code RSPH [20,21] to consider the spher-
ical version of the Sod shock tube problem [9]. A high pressure region of p = 1.0, q = 1.0 is separated from a
low pressure region p = 0.1,q = 0.125 by a spherical membrane located at r = 1.0. The gas with a ratio of
specific heats c = 1.4, is initially at rest. Time is given relative to the instance when the membrane is removed.
In the planar case, the numerical results are easily validated, by comparing with the analytical solution. In the
spherical case, however, no analytical solution is available. We have therefore chosen to compare our results
with the results obtained using a numerical 1D Riemann solver.

Fig. 3 shows the results obtained using RSPH (solid lines), for the density, pressure, internal energy and
velocity in the radial direction. The particle number is approximately the same as the number of nodes used
in the Riemann solver (dashed lines). The agreement with the Riemann solver results in Fig. 3 is good, even at
the inner boundary (r = 0). The technique of using mirror particles [22,23] to handle boundary conditions, was
only necessary at the outer boundary, as the kernel function automatically takes care of the boundary condi-
tions at the origin.

Although RSPH allows the smoothing length to vary in time and space as a piecewise constant function, we
have, for simplicity, used a constant smoothing length in this test and most of the other tests in this article.
Another special feature of RSPH is the possibility of redefining the particle distribution at regular time inter-
vals (particle regularization). A new set of particles are created in a regular configuration, based on the old
particle distribution so as to ensure mass, energy and momentum conservation. A detailed description of
Fig. 3. Sod shock tube test in a spherically symmetric coordinate system at t = 0.5. Solid lines show the results obtained with RSPH
(without particle regularization) and dashed lines show the results with the Riemann solver.



Fig. 4. Sod shock tube test in a spherically symmetric coordinate system at t = 0.5. Solid lines show the results obtained with RSPH
(particle regularization applied) and dashed lines show the results with the Riemann solver.
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the method is found elsewhere [12,20,24]. For the result presented in Fig. 3 particle regularization was not
applied.

In Fig. 4, an identical test to that discussed in Fig. 3 is presented, this time, however, particle regularization
has been applied. It is clear that the particle redefinition serves to reduce the noise. Both the spike in the energy
profile and the characteristic blip in the pressure profile at the contact discontinuity, have been reduced as a
result of the particle redefinition. In both cases, we deem the SPH results to be in good agreement with the
Riemann solver results.

A reliable solution to the Sod problem without particle regularization can only be obtained with a smaller
interparticle distance in the high pressure region. In the test presented in Fig. 3 we used 600 particles, with the
particles in the high-pressure region distributed four times closer than in the low-pressure region. This is done
to avoid substantial numerical errors in the rarefaction wave region due to increasing particle separation. With
particle regularization this problem is reduced and in Fig. 4 we use 500 particles. Consequently, with particle
regularization, less particles are necessary to achieve comparable resolution. For the remaining applications,
we have therefore chosen particle regularization at regular time intervals, keeping the smoothing length
constant.

The Noh problem [6] is a test well suited for numerical simulations in the planar, cylindrically and spher-
ically symmetric cases, as there are analytical solutions available. A shock of infinite strength is created in a
gas initially at rest. The ratio of specific heats is set to c = 1.4. Driven by a constant velocity piston, the gas
is brought to rest by a shock starting at the origin. It is a challenging test, in that the initial pressure and
internal energy are set to zero. The initial density and velocity are set to q = 1 and v = �1. In the spherically
symmetric case, the post-shock conditions are q+ = 64, v+ = 0, p+ = 64/3 and e+ = 1/2, whereas the pre-
shock density given as a function of radius r is q� = (1 + t/r)2. At the position of the shock, determined
from the relation Rs = t/3, the post-shock density is constant q�(Rs) = 16. The constant shock speed is
V s ¼ _Rs ¼ 1=3.

In Fig. 5, we show the results obtained for the density, pressure, internal energy and radial velocity with
RSPH (solid lines) compared to the analytical solution (dashed lines). The agreement is good and shows a
significant improvement of the SPH results as presented by [5]. Except for the inner boundary, the two curves
are difficult to distinguish. One of the topics studied in connection with the Noh problem [6] is the lacking
ability of the von Neumann–Richtmyer artificial viscosity [19] to handle situations in which streaming gas



Fig. 5. Nohs numerical test for a spherically symmetric coordinate system at t = 0.6. Solid lines show the results obtained with RSPH and
dashed lines show the analytical result.
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is brought to rest at a rigid wall. The phenomena is referred to as excess wall heating. A solution to the excess
wall heating problem is to introduce an artificial heat-conduction term. This term was first suggested by Noh
[6], and has later been introduced in SPH methodology [13]. The energy rise and density dip observed in Fig. 5,
are most likely a result of the excess wall heating problem. In the results presented here, the correcting artificial
heat-conduction term is not included.

A separate parameter study of the characteristic parameters a and b in the formulation of the artificial U:/
ES/DTD501/YJCPH/994viscosity [25], showed that an increase in both a and b, would lead to the removal of
the small overshoot at the shock front, as may be observed in Fig. 5. An additional effect, however, was the
reduction of the overall pre-shock density level. We used a = 1 and b = 2 in these computations. In our sim-
ulations with the smoothing length set to h = .001 and allowing two particles per h, there were 2000 particles
distributed initially. As the computational domain is constantly reduced, the particle regularization ensures
that only about 800 particles remain at t = 0.6.

As a final test of the spherically symmetric formulation, we present results for the Sedov point explosion.
The analytical solution for a point explosion is given by Sedov [26], making the assumption that the atmo-
spheric pressure relative to the pressure inside the explosion is negligible. The position of the shock as a func-
tion of time t, relative to the initiation of the explosion, is given as
RðtÞ ¼ et2

q0

� �1=ðdþ2Þ

; ð26Þ
with d = 2 and d = 3 for cylindrical and spherical geometry, respectively. The density in the undisturbed atmo-
sphere is q0, whereas e is a dimensionless energy. Behind the shock, we have the following properties:
q2 ¼
cþ 1

c� 1
q0; ð27Þ

P 2 ¼
2

cþ 1
q0w

2; ð28Þ

v2 ¼
2

cþ 1
w; ð29Þ
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where the shock velocity
wðtÞ ¼ dR
dt

¼ 2

dþ 2

RðtÞ
t

ð30Þ
is obtained from Eq. (26). The complete (and lengthy) analytical solution to the pressure, density and velocity
profile behind the shock front can be found in [26].

In numerical simulations, energy deposition in a single point is difficult to tackle. A solution to the problem,
first suggested by Brode [27,28], is to make use of the bursting balloon analogue. Rather than depositing the
total energy in a single point, the energy is released into a balloon of finite volume V
e ¼ ðP � P 0ÞV
c� 1

. ð31Þ
The energy release in a balloon of radius r0 raises the pressure to the value,
P ¼ 3ðc� 1Þe
ðdþ 1Þprd0

. ð32Þ
In the simulations, we assume that the undisturbed medium is at rest with a pressure P0 = 1.0 · 10�5. The den-
sity is constant q0 = 1, also in the pressurized region. In Fig. 6, we have plotted the results at t = 0.05 for den-
sity, pressure and velocity for an increasing number of particles. For simplicity, only one smoothing length
level was used in these simulations. The agreement with the analytical solution, plotted with a solid line, is
seen to increase with the increasing particle number n used in the simulations. Both with a choice of
n = 800 and n = 400, the velocity and density are well represented by the simulations, whereas the pressure
Fig. 6. Sedov blast wave test at t = 0.05 for density, pressure and velocity in a spherically symmetric system.
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level is somewhat underestimated. In the current simulations, the balloon radius was set to r0 = 0.025. As was
illustrated in Eq. (32), the bursting balloon analogue is only an approximation to the point explosion problem.
The results are therefore dependent on the choice of balloon radius. It is found that an increase in the balloon
volume leads to a better fit of the numerical velocity profile to the analytical velocity solution, but it also leads
to a shift in the shock front, and consequently results in a poorer fit of the density and pressure profile com-
pared to the Sedov point explosion solution. Reducing the balloon radius, leads to a small shift to the left in
the density, pressure and velocity profile. This leads to a poorer fit of the velocity profile to the analytical
solution.

5. Planar symmetry

The formulation as described for the spherically symmetric problem, is also applicable to planar symmetry.
For a planar symmetric case, F(r) = F(z), the integral interpolant reduces to
hF ðzÞi ¼
Z

dz0 F ðz0Þ
Z 2

jz0�zj=h
dq 2ph2qW3ðqÞ ð33Þ

�
Z

dz0F ðz0ÞW 3P1ðz0; z; hÞ; ð34Þ
where
W 3P1ðz0; z; hÞ ¼
1

h

7
10
� Cðjr0 � rjÞ; 0 6 jr0 � rj < 1;

8
10
� Dðjr0 � rjÞ; 1 6 jr0 � rj < 2;

(
ð35Þ
with r 0 ” z 0/h and r ” z/h. In the planar case, with W3P1 ” W3P1(zi,zj;h), we have oW3P1/oz
0 = �oW3P1/oz as

expected. The equations of motion thus take the familiar form
dzi
dt

¼ vi; ð36Þ

qi ¼
X
j

mjW 3P1; ð37Þ

dvi
dt

¼ �
X
j

mj
P i

q2
i
þ Pj

q2
j
þ pij

 !
o

ozi
W 3P1; ð38Þ

dei
dt

¼
X
j

mj
P i

q2
i
þ 1

2
pij

� �
vij

o

ozi
W 3P1; ð39Þ

P i ¼ ðc� 1Þeiqi. ð40Þ
In the planar case, mj is the mass inside a plane parallel slab with sides of unit length and thickness dz, whereas
vij = vi � vj.

Cartesian problems in 1D have traditionally been studied with a 1D version of the kernel function equation
(2),
W 1ðz0; z; hÞ ¼ W1ðqÞ; ð41Þ

with q = |z 0 � z|/h. It is therefore of some interest to compare numerical results based on W3P1 and W1. In
Fig. 7, we show the relative numerical error of the homogeneous planar compression problem with W3P1

(thick lines) andW1 (thin lines) as kernel functions, given vz = �z. The figure illustrates that the relative ampli-
tude error of q (solid lines) and e (dash-dotted lines) are significantly larger when the W1 kernel function is
used. As in the spherical case, we observe that the relative error is reduced as the interparticle distances are
reduced.

The Sod problem [9] has also been tested for the planar case and the results are presented in Fig. 8. Density,
pressure, internal energy and velocity are plotted as functions of position at t = 0.5. The time is defined relative



Fig. 7. Relative error in the density (solid lines) and energy (dash-dotted lines) for a controlled planar compression. Thin lines and thick
line represent results obtained with the W1 and W3P1 as kernel functions, respectively.

Fig. 8. Shock tube test in Cartesian coordinates at t = 0.5. Solid lines show the results obtained with RSPH and dashed lines show the
analytical results.
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to the removal of the membrane at the location z = 1. When the numerical results (solid lines) are compared to
the analytical solution (dashed lines), the agreement is good, as the two curves are difficult to distinguish. This
also applies close to origin. In this planar case, reflecting boundary conditions were used on both boundaries.
The particle number in these simulations was 500.

The Noh test [6] has also been performed in the planar case, with the same initial conditions as for the
spherical coordinate system. The post-shock conditions, however, differ. In the planar case, the analytical
post-shock conditions are q+ = 4, v+ = 0, p+ = 4/3 and e+ = 1/2. Once more the shock position is given as
Rs = t/3. In Fig. 9, the results for the planar case is presented for density, pressure, internal energy and
velocity. The numerical results are plotted using solid lines, whereas the analytical solution is plotted with
dashed lines. In the present simulations, the initial particle number was 2000 while approximately 800 par-
ticles remain at t = 0.6. The agreement with the analytical results is good, except for the region close to
origin. As discussed for the spherical case, the density dip and energy rise near the symmetry plane z = 0
are problems related to the shortcomings of the artificial viscosity [19]. Here, no attempt was made to
correct for this phenomena.



Fig. 9. Nohs numerical test for Cartesian coordinates at t = 0.6. Solid lines show results obtained with RSPH and dashed lines show the
analytical results.
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6. Cylindrical symmetry

The procedure used for the spherically symmetric case can easily be extended also to cylindrically symmet-
ric systems. In the cylindrical case, the expression for the integral interpolant reduces to
hF ðr; zÞi ¼
Z

dr0 r0 dz0 F ðr0; z0Þ
Z

du W3ðqÞ

�
Z

dr0r0dz0F ðr0; z0ÞW 3C2ðr0; z0; r; z; hÞ; ð42Þ
where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � zÞ2 þ ðr0 � rÞ2 þ 4r0r sin2ðu=2Þ

q
=h. The kernel function for cylindrical symmetry is thus given

as
W 3C2ðr0; z0; r; z; hÞ ¼ 4

Z arcsinðminð1;
ffiffiffiffiffiffiffiffiffiffiffiffi
ð4�AÞ=B

p
ÞÞ

0

W3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ Bsin2v

p
Þ dv. ð43Þ
In Eq. (43), we defined A = ((z 0 � z)2 + (r 0 � r)2)/h2 and B = 4r 0r/h2. Unfortunately, the kernel function and
its derivatives are this time expressed in terms of elliptic integrals. In SPH applications, it is imperative that
the kernel function and its derivatives can be evaluated fast. For the present case, it thus seems necessary to
make use of numerical evaluation by table interpolation. For cylindrical symmetry with W3C2 ” W3C2(rj,zj, ri,
zi;h), we find oW3C2/oz

0 = �oW3C2/oz while, similarly to the spherical case, oW3C2/or
0 6¼ �oW3C2/or.

The 2D kernel function W3C2 is only one of several alternative kernel functions for cylindrical symme-
try. Another choice is W5PC2, where the notation indicates that the dimension, (d), of the ‘‘generic’’ kernel
function Wd has been reduced from 5 to 3 through a ‘‘planar symmetric’’ transformation (P), and then to
2 by a cylindrically symmetric transformation (C). Correspondingly, in the 1D cylindrically symmetric
case, two alternative forms are W2C1 and W4PC1. We note that W3C2, W2C1, W5PC2 and W4PC1 all have
identical range in r 0 � r. The former set of kernel functions are C2-continuous, whereas the latter set
are C3-continuous. Making use of W3C2, the equations of motion for the cylindrically symmetric case
are
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dri
dt

¼ vri; ð44Þ

dzi
dt

¼ vzi; ð45Þ

qi ¼
X
j

mjW 3C2 ð46Þ

dvri
dt

¼ �
X
j

mj
P i

q2
i
þ P j

q2
j
þPij

 !
o

ori
W 3C2; ð47Þ

dvzi
dt

¼ �
X
j

mj
P i

q2
i
þ P j

q2
j
þPij

 !
o

ozi
W 3C2; ð48Þ

dei
dt

¼
X
j

mj
P i

q2
i
þ 1

2
Pij

� �
vrj

o

orj
þ vri

o

ori
þ vzij

o

ozi

� �
W 3C2; ð49Þ

P i ¼ ðc� 1Þeiqi. ð50Þ
Here, mj is, apart from a factor 2p, the mass inside a cylindrical shell of radius rj, thickness dr and length dz.
The identical set of equations applies if W3C2 is replaced by W5PC2.

6.1. Simple cylindrical test cases

The relative error of a controlled cylindrical compression test with vz = 0 and vr = �r is presented in Fig. 10.
Here the relative errors of Dq/q (solid lines) and De/e (dash-dotted lines) resulting from Eqs. (46) and (49) as
compared with the analytical results are displayed, using the 1D kernel functions W2C1 (thin lines) and W4PC1

(thick lines). Note that the relative error of e with kernel function W2C1 has been multiplied by 1/100. It thus
appears that a significant numerical improvement is achieved by making use of the higher order continuous
kernel functionW4PC1. Similar improvements are expected for the 2D case, that is, making use ofW5PC2 instead
of W3C2.

In Fig. 11, we present the RSPH (dotted lines that look like solid lines) and Riemann solver (dashed lines)
solutions for a cylindrically symmetric version of the Sod problem [9]. The problem was run with a 2D code,
with the membrane initially positioned at an axial distance r = 1. The total number of particles in the compu-
tational domain (0 < r < 2, 0 < z < 0.5) was 40,000. No additional smoothing is used in the presentation of
these data, as we make a projection of particles found within the layer 0.2 < z < 0.3 on to the r–t plane. Con-
sequently, each point in Fig. 11 is the position and value of individual particles. Again the results are in good
agreement with the results of the Riemann solver.

The analytical solution to the corresponding Noh test [6] is different from both the planar and spherical case
although the initial conditions are the same. The post-shock conditions are q+ = 16, v+ = 0, p+ = 16/3 and
e+ = 1/2, while the pre-shock density given as a function of radius is q� = (1 + t/r). As in the previous cases,
the shock position is given as Rs = t/3, consequently, at the shock front position Rs, the post-shock density is
. Relative error in density (solid lines) and energy (dash-dotted lines) for a controlled cylindrical compression. Thin lines represent
obtained with W2C1, thick lines W4PC1.



Fig. 11. Sod numerical test for a 2D cylindrical code at t = 0.5. Dotted lines show the results obtained with RSPH and dashed lines show
the results with a Riemann solver code.
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constant q = 4. The results for the density, pressure, internal energy and radial velocity are plotted in Fig. 12
with solid lines for the numerical results, and dashed lines for the analytical results. As discussed in the spher-
ical case, the agreement is good, except for the region close to origin, where the excess wall heating problem
gives rise to a density dip and an internal energy rise.
Fig. 12. Noh numerical test for a cylindrically symmetric system at t = 0.6. Solid lines show the results obtained with RSPH and dashed
lines show the analytical results.



Fig. 13. Sedov blast wave test at t = 0.05 for density, pressure and velocity in a cylindrically symmetric system.
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The point explosion test introduced by Sedov [26] is also studied for a cylindrical system. Inside the balloon,
pressure is chosen in accordance with Eq. (32) with d = 2. The results are presented in Fig. 13 for the density,
pressure and velocity. The analytical solution is plotted with a solid line. As the smoothing length is reduced,
the particle number increases, and the fit to the analytical solution is improved. The density and velocity levels
are well represented by the numerical simulations, the pressure peak, however, is slightly underestimated. Only
one smoothing length level was used in these simulations.

The numerical simulations are based on the assumption that the point source explosion can be represented
by a pressurized balloon of finite volume. In these simulations, we have chosen a balloon radius r0 = 0.015. We
find that a reduction of the balloon volume leads to a left-hand shift in the pressure, density and velocity pro-
file, and similarly, an increased volume leads to a right-hand shift of the profiles. The best fit to the analytical
pressure solution was found for r0 = 0.03, where the levels are comparable. The velocity profile, however, gave
a poorer fit to the analytical solution in this case.

7. Spherical shock interactions in cylindrical symmetry

Except for the cylindrical Sod test, the results presented so far have all been one dimensional, and for sim-
plicity we have used a constant smoothing length in all simulations. In our last example, we wish to study a
fully 3D problem, first presented in Section 7.1 with a constant smoothing length. Finally, in Section 7.2, we
demonstrate the full capability of the symmetric formulation with RSPH, allowing the smoothing length to
vary in a piecewise constant manner. The resolution is optimized by performing particle regularization at reg-
ular time intervals.

We look at a cylindrically symmetric blast wave problem in which two spherical balloons of equal radii,
centered at the symmetry axis are given high pressure and density relative to the surrounding medium. The
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c = 1.4 gas of the balloons are initially at rest, separated from the surrounding by spherical membranes. When
the membranes are removed, the pressure and density differences cause two individually spherical shocks to be
formed. The initial conditions are given as follows:
P ¼
104;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� 4Þ2

q
< 0:5;

103;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� 6Þ2

q
< 0:5;

10�2; otherwise

8>>><
>>>:

ð51Þ
and
q ¼
10;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� 4Þ2

q
< 0:5;

10;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� 6Þ2

q
< 0:5;

1:0; otherwise.

8>>><
>>>:

ð52Þ
A computational domain of (r,z) = {[0,4], [0, 9]} are used for the current simulations.

7.1. Results with a constant smoothing length

In Fig. 14, density profiles in the r–z plane are presented for different times with a color-bar on the right-
hand side indicating the density levels. The figure shows the formation and collision of two spherical shocks.
Since the higher pressure jump will generate a faster moving shock, the two shocks of Fig. 14(a) are observed
to have different radii. In both cases, rarefaction waves are moving inwards, reducing the pressure and density
inside the originally high pressure regions. The density difference inside the two shocks are illustrated by the
difference in colors. At t = 0.02, the two shocks in Fig. 14(a) are about to collide, with their point of contact
still at the symmetry axis. Later, at t = 0.04, the point of contact has left the symmetry axis. The highest den-
sity area, here plotted in white, is observed where the two shock fronts meet in Fig. 14(b). The collision of the
two shocks generates reflected shocks traveling in opposing directions relative to the initial shocks. The re-
flected shock of the lower balloon is most clearly observed moving downwards, causing the inner region of
the lower balloon to look asymmetric. The reflected wave continues to propagate downwards as Fig. 14(c)
illustrates, whereas the reflection point moves outwards. For the consecutive time step t = 0.1 and t = 0.14,
the density inside the two balloons are gradually smoothed, and the reflected pattern of the two shock fronts
towards the symmetry axis are becoming less apparent. An enlargement of the interaction region of the two
shocks is shown in Fig. 14(f) for t = 0.14.

The complex shock reflection and interaction pattern obtained when the two shocks collided are further
illustrated in Fig. 15(a), where the absolute velocity for t = 0.14 has been plotted. The initial spherical shock
fronts and shock interaction points are easily recognized. In comparison with the density plot of Fig. 14(e) the
distinct appearance of the curved reflected shock is also worth noting.

Fig. 15(b) shows the density profile parallel to the symmetry axis, plotted for different radial distances. The
solid line is used for r = 0.05, the dotted line for r = 1.0, and the dashed line for r = 1.64. The shock fronts are
distinct, with little or no noise visible. The highest density level is observed in the shock interaction area, for
r = 1.64. In the present simulations, we allow particle regularization, but keep the smoothing length constant,
h = 0.0265. With 1.7 particles per h, 1.5 · 105 particles are used in these computations.

7.2. Results with a variable resolution using RSPH

We also study the collision of two spherical shocks allowing a variable resolution in our computations,
through the use of a piecewise constant smoothing length. The density profile for this case is given in
Fig. 16. The shock front and shock interaction point are distinct and well resolved. In comparison with
Fig. 14, Fig. 16 illustrates how the improved resolution leads to a reduction in the shock front width, and
an increase in the density level at the shock interaction point.



Fig. 14. Density profiles for the cylindrical blast wave test at: (a) t = 0.02, (b) t = 0.04, (c) t = 0.06, (d) t = 0.1 and (e) t = 0.14. (f) An
enlargement of the shock interaction point at t = 0.14.
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In these simulations, we use 1.7 particles per h. The maximum smoothing length was set to h = 0.34, and we
allow for 6 smoothing lengths levels. The h-profile is determined from the density and velocity gradients in the
current simulation, and is only modified when regularization is performed. Fig. 17(a) illustrates the smoothing
length profile at t = 0.14. As the colorbar shows, the darker the color is, the finer is the resolution. If the h-
profile is compared with the density plot in Fig. 16(e) and the absolute velocity plot in Fig. 17(b), it is clear that
the fine resolution is used for most of the shock structures, whereas the smoothing length is increased in areas
where there is less or no dynamics. Note that the fine resolution is not restricted to the high density regions, as
would be the case with standard SPH [29], but is also found in the rarefied regions with high velocities. Com-
paring the velocity profiles of Figs. 15(a) and 17(b) illustrate how the introduction of a variable smoothing
length profile has improved the resolution and the level of details observed. The smoothing length algorithm
is constructed so that the smoothing length profile only varies in steps of two, as illustrated in Fig. 17(a).
Particle regularization ensures that the smoothing length profile is optimized at regular time intervals. In



Fig. 15. (a) Absolute velocity at t = 0.14. (b) Density profiles at r = 0.05, 1.0 and 1.64 are plotted with solid, dotted and dashed lines,
respectively.
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the current simulations, the average number of particles used is approximately 1.5 · 105, which is about the
same number of particles used for the constant h simulations. The number of particles necessary to obtain
comparable resolution with a constant smoothing length would be approximately 9.2 · 105 particles.

In Fig. 17(c), the density profiles parallel to the symmetry axis have been plotted for the radial distances of
r = 0.05, 1.0 and 1.64 with solid, dotted, and dashed lines, respectively. The density peaks are well resolved
and, in comparison with Fig. 15(b) we observe an increase in the density peak values, most prominent for
the dashed line crossing the shock interaction point. This is due to the increased resolution obtained with
the introduction of a step-wise variable smoothing length, which serves to improve the capturing of density
and pressure discontinuities.

The results presented illustrate how the use of multiple smoothing length levels combined with regulariza-
tion produce high quality results with relatively low particle numbers. In spherical and cylindrical symmetry,
the numerical discretization error is found to increase towards the origin or the symmetry axis, respectively. In
these simulations, auxiliary particles, described in closer details in [12], have been used to reduce this problem
within a 2h smoothing length distance from the axis. See Section 8 for a detailed discussion of this.
8. Discussion

The development of 3D SPH codes in Cartesian coordinates is straight forward. The number of interpola-
tion particles in such 3D computations are, however, restricted by computer resources. Special formulation of
SPH codes for spherically and cylindrically symmetric systems therefore still have interest, and a wide range of
applications. Examples in astrophysics are the formation of bow shocks, phenomena in the solar atmosphere,
the formation of accretion disks, and black holes. In material modeling, impact studies have been performed
with an axi-symmetric assumption, and so has the source description in blast wave studies.

This work was initiated after facing the short-comings of the technique suggested in [8] in the region close to
the symmetry axis, for a cylindrically symmetric system. Going back to the basic interpolation theory of the
SPH method we have developed new kernel functions that reflect the assumed symmetry of the problem. A
Lagrangian formalism was further used to develop new sets of equations of motion in the proper coordinate
system. In contrast to previous descriptions the equations of motion are no longer singular at the point/axis of
symmetry r = 0. Furthermore, the new kernel function formulations embed the natural boundary conditions



Fig. 16. Density profiles for the cylindrical blast wave test at: (a) t = 0.02, (b) t = 0.04, (c) t = 0.06, (d) t = 0.1 and (e) t = 0.14. (f) An
enlargement of the shock interaction point at t = 0.14.
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at r = 0 in both the spherically symmetric and cylindrically symmetric case. Additional boundary conditions at
r = 0 are therefore not needed.

The cylindrical version of the Sod shock tube test was studied in [8]. Due to the problems at the symmetry
axis, the membrane was positioned and results only presented in a region well separated from r = 0. The re-
sults presented with the current technique indicate a significantly improved treatment near the axis, and the
overall agreement with numerical results from a Riemann solver is good. In [5] results of the spherical Noh
problem with a 2D cylindrical SPH code was presented. Deviations in their results from the analytical solution
can be seen, at both the inner and outer boundaries. Additionally, the solution fails to reproduce the correct
shock position and post-shock density level. The solution to the Noh problem was improved in [7] by intro-
ducing a set of additional stress points in the SPH formulation. Although the formulation does not seem to
reproduce the exact analytical density level, the improvements are pronounced, as the shock position and the
pre-shock shape give better agreement with the analytical solution. In our new formulation of SPH with



Fig. 17. (a) The smoothing length profile h and (b) absolute velocity at t = 0.14. (c) The density profiles at r = 0.05, 1.0 and 1.64 are
plotted with solid, dotted and dashed lines, respectively.
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symmetries, the analytical solutions are reproduced to high accuracy in both the spherical, the cylindrical, and
the planar case of the Noh infinite shock problem. The excess wall heating problem [6] was not addressed in
any of the results reported, but our results demonstrate that the problem is observed independently of the
coordinate system chosen, and will according to [6] be mended through the introduction of artificial heat con-
duction. The problem is related to the formulation of the artificial viscosity.

The Sedov point explosion problem was simulated making use of the bursting balloon analogue, similar
to the numerical setup used by Fryxell et al. in their adaptive mesh refinement hydrodynamic code [30]. In
the cylindrical case our results for the two finest smoothing lengths are comparable to their 2D simulation
with 8 levels of mesh refinement. As in our results, their density and velocity profiles are well fitted with the
analytical solutions. Their pressure level is slightly under-estimated, however, as was also observed in our
results. In [30] the 2D simulations were performed in a Cartesian coordinate system, a radial averaging tech-
nique was therefore applied on the plotted results. Our results are presented without any kind of smoothing.
Fryxell et al. [30] also presented 3D results of the spherical Sedov problem. The results are again averaged,
and rather large error estimates are included in the presentation. Their results are presented using 5 levels of
mesh refinement. In these results the peak values are clearly underestimated, especially for the pressure. Our
SPH results are slightly better, even for a low resolution run of 200 particles with one smoothing length
level.

The Sedov point explosion problem has also been studied with traditional and adaptive (A)SPH methods
by Owen et al. [11]. They do not take advantage of the symmetry in the problem, as their results are presented
in 2D and 3D Cartesian coordinates. The initialization of the problem is slightly different from that of the
balloon analogue, and the simulations are presented within a smoothing length range h = [1.0 · 10�5,0.12].
Although the results are presented for slightly different time steps, it is clear that their 2D simulations of
the density is under-estimated both for the traditional and adaptive SPH. Also the shock front is shifted to
the right compared with the analytical solution. This may be due to the choice of initialization of the problem.
Owen et al. also performed 3D simulations with coarser resolution. We find that our 100 particles simulation
shows better agreement with the analytical solution, than those presented by [11] using 323 particles. For the
chosen time step t = 0.1, their pressure and velocity post shock profiles show significant deviation from the
analytical solution.
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The numerical SPH formulation presented in this paper should be independent of the method chosen for
allowing variations in the smoothing length. Most of the results presented here were therefore performed with
a constant smoothing length. In our final example, however, the new formulation is applied to a more realistic
situation, using the full capability of our RSPH code, as we study the collision of two spherical shocks in cylin-
drical symmetry. For this result the smoothing length is allowed to vary in a piecewise constant manner, allow-
ing for 6h-profile levels and the resolution is optimized through the use particle regularization at regular time
intervals. The results are compared with the results of a constant smoothing length simulation, and demon-
strate high resolution of the shock structures, and a fine-structured smoothing length profile, obtained with
a relatively low particle number.

In spherical and cylindrical symmetry the numerical discretization error in the process of replacing the inte-
gral interpolant with a discrete summation interpolant will increase towards the origin or symmetry axis,
respectively. This is a consequence of the particular shape of the kernel function required by the assumed sym-
metry in this region. In the original SPH formulation this problem can be handled by decreasing the interpar-
ticle distance in this area, in a manner similar to what was discussed for the Sod test in Section 4, when
regularization was not applied. In RSPH, the performance of the discrete formulation is improved by using
auxiliary particles within a 2h distance from the symmetry axis. The auxiliary particles were originally intro-
duced in RSPH to handle the area near steps in the smoothing length. The details of this method is discussed
in closer details in [12].

A concluding remark on kernel functions may be appropriate. The success of an SPH formalism that is to
reflect a particular problem symmetry rests on the development of proper kernel functions that incorporate
that symmetry. At the same time the efficiency of the SPH code depends on the efficiency in evaluating this
kernel function and its derivatives. For spherical or planar symmetry the derived kernel functions were ex-
pressed in simple analytical forms. In the case of cylindrical symmetry, however, the analytical form of the
corresponding kernel function, derived on the basis of the standard third order B-spline function, is expressed
in terms of elliptic functions. Efficiency in this case thus requires the kernel function and its derivatives to be
evaluated through table interpolation. Work is currently in progress to implement alternative kernel functions
for the cylindrical case with equal or improved performance that allows for fast and direct evaluation.
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